New Journal Website is available at:

Published by: Kowsar

Links Between Concentrations of Serum 25-hydroxyvitamin D3 and the Numbers of Circulating Progenitor Mononuclear Cells in Patients With Metabolic Syndrome

Alexander E Berezin 1 , * , Alexander A Kremzer 2 , Yulia V Martovitskaya 3 and Tatyana A Berezina 4
Authors Information
1 Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
2 State Medical University, Clinical Pharmacology Department, Zaporozhye, Ukraine
3 Clinical Laboratory, Dia-Service, Clinical Immunology Department, Zaporozhye, Ukraine
4 Private Center, Vita-Center, Zaporozhye, Ukraine
Article information
  • Research in Cardiovascular Medicine: March 2017, 6 (2); e13345
  • Published Online: August 7, 2016
  • Article Type: Research Article
  • Received: January 23, 2016
  • Revised: March 3, 2016
  • Accepted: March 29, 2016
  • DOI: 10.5812/cardiovascmed.36580

To Cite: Berezin A E, Kremzer A A, Martovitskaya Y V, Berezina T A. Links Between Concentrations of Serum 25-hydroxyvitamin D3 and the Numbers of Circulating Progenitor Mononuclear Cells in Patients With Metabolic Syndrome, Res Cardiovasc Med. 2017 ;6(2):e13345. doi: 10.5812/cardiovascmed.36580.

Copyright: Copyright © 2017, Research in Cardiovascular Medicine. .
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16): 1640-5[DOI][PubMed]
  • 2. Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007; 49(4): 403-14[DOI][PubMed]
  • 3. Bayturan O, Tuzcu EM, Lavoie A, Hu T, Wolski K, Schoenhagen P, et al. The metabolic syndrome, its component risk factors, and progression of coronary atherosclerosis. Arch Intern Med. 2010; 170(5): 478-84[DOI][PubMed]
  • 4. Strange RC, Shipman KE, Ramachandran S. Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome. World J Diabetes. 2015; 6(7): 896-911[DOI][PubMed]
  • 5. Parker J, Hashmi O, Dutton D, Mavrodaris A, Stranges S, Kandala NB, et al. Levels of vitamin D and cardiometabolic disorders: systematic review and meta-analysis. Maturitas. 2010; 65(3): 225-36[DOI][PubMed]
  • 6. Amirbaigloo A, Hosseinpanah F, Sarvghadi F, Tohidi M, Eskandary PS, Azizi F. Absence of association between vitamin D deficiency and incident metabolic syndrome: Tehran Lipid and Glucose Study. Metab Syndr Relat Disord. 2013; 11(4): 236-42[DOI][PubMed]
  • 7. Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr. 2004; 79(5): 820-5[PubMed]
  • 8. Minambres I, de Leiva A, Perez A. [Hypovitaminosis D and metabolic syndrome]. Med Clin (Barc). 2014; 143(12): 542-7[DOI][PubMed]
  • 9. Nimitphong H, Chanprasertyothin S, Jongjaroenprasert W, Ongphiphadhanakul B. The association between vitamin D status and circulating adiponectin independent of adiposity in subjects with abnormal glucose tolerance. Endocrine. 2009; 36(2): 205-10[DOI][PubMed]
  • 10. McGill AT, Stewart JM, Lithander FE, Strik CM, Poppitt SD. Relationships of low serum vitamin D3 with anthropometry and markers of the metabolic syndrome and diabetes in overweight and obesity. Nutr J. 2008; 7: 4[DOI][PubMed]
  • 11. Jablonski KL, Chonchol M, Pierce GL, Walker AE, Seals DR. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011; 57(1): 63-9[DOI][PubMed]
  • 12. Sato M, Hiragun A. Demonstration of 1 alpha,25-dihydroxyvitamin D3 receptor-like molecule in ST 13 and 3T3 L1 preadipocytes and its inhibitory effects on preadipocyte differentiation. J Cell Physiol. 1988; 135(3): 545-50[DOI][PubMed]
  • 13. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009; 94(1): 26-34[DOI][PubMed]
  • 14. Berezin AE. The impact of low-grading inflammation on circulating endothelial-derived progenitor cells in patients with metabolic syndrome and diabetes mellitus. J Endocrinology Diabetes. 2015; 2(4): 1-8[DOI]
  • 15. Kuliszewski MA, Ward MR, Kowalewski JW, Smith AH, Stewart DJ, Kutryk MJ, et al. A direct comparison of endothelial progenitor cell dysfunction in rat metabolic syndrome and diabetes. Atherosclerosis. 2013; 226(1): 58-66[DOI][PubMed]
  • 16. Kotlinowski J, Dulak J, Jozkowicz A. [Type 2 diabetes mellitus impairs endothelial progenitor cells functions]. Postepy Biochem. 2013; 59(3): 257-66[PubMed]
  • 17. Lombardo MF, Iacopino P, Cuzzola M, Spiniello E, Garreffa C, Ferrelli F, et al. Type 2 diabetes mellitus impairs the maturation of endothelial progenitor cells and increases the number of circulating endothelial cells in peripheral blood. Cytometry A. 2012; 81(10): 856-64[DOI][PubMed]
  • 18. Yiu YF, Chan YH, Yiu KH, Siu CW, Li SW, Wong LY, et al. Vitamin D deficiency is associated with depletion of circulating endothelial progenitor cells and endothelial dysfunction in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011; 96(5)-5[DOI][PubMed]
  • 19. Gui J, Rohrbach A, Borns K, Hillemanns P, Feng L, Hubel CA, et al. Vitamin D rescues dysfunction of fetal endothelial colony forming cells from individuals with gestational diabetes. Placenta. 2015; 36(4): 410-8[DOI][PubMed]
  • 20. National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002; 106(25): 3143-421[PubMed]
  • 21. Levey AS. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150(9): 604[DOI]
  • 22. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7): 412-9[PubMed]
  • 23. Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care. 2012; 35(7): 1605-10[DOI][PubMed]
  • 24. Tung JW, Parks DR, Moore WA, Herzenberg LA, Herzenberg LA. New approaches to fluorescence compensation and visualization of FACS data. Clin Immunol. 2004; 110(3): 277-83[DOI][PubMed]
  • 25. Hoffman RA. Standardization, calibration, and control in flow cytometry. Curr Protoc Cytom. 2005; [DOI][PubMed]
  • 26. Berezin AE, Kremzer AA. Relationship between circulating endothelial progenitor cells and insulin resistance in non-diabetic patients with ischemic chronic heart failure. Diabetes Metab Syndr. 2014; 8(3): 138-44[DOI][PubMed]
  • 27. Berezin AE, Kremzer AA. Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease. J Clin Med. 2013; 2(3): 32-44[DOI][PubMed]
  • 28. Berezin AE. Biological markers of cardiovascular diseases. Part 3. Diagnostic and prognostic value of biological markers in stratification of patient s with cardiometabolic risk 2015;
  • 29. Mori K, Kitazawa R, Kondo T, Mori M, Hamada Y, Nishida M, et al. Diabetic osteopenia by decreased beta-catenin signaling is partly induced by epigenetic derepression of sFRP-4 gene. PLoS One. 2014; 9(7): 102797[DOI][PubMed]
  • 30. Hazra S, Jarajapu YP, Stepps V, Caballero S, Thinschmidt JS, Sautina L, et al. Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia. 2013; 56(3): 644-53[DOI][PubMed]
  • 31. Chakravarthy H, Beli E, Navitskaya S, O'Reilly S, Wang Q, Kady N, et al. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy. PLoS One. 2016; 11(1)[DOI][PubMed]
  • 32. Barthelmes D, Irhimeh MR, Gillies MC, Karimipour M, Zhou M, Zhu L, et al. Diabetes impairs mobilization of mouse bone marrow-derived Lin(-)/VEGF-R2(+) progenitor cells. Blood Cells Mol Dis. 2013; 51(3): 163-73[DOI][PubMed]
  • 33. Wu H, Li R, Wei ZH, Zhang XL, Chen JZ, Dai Q, et al. Diabetes-Induced Oxidative Stress in Endothelial Progenitor Cells May Be Sustained by a Positive Feedback Loop Involving High Mobility Group Box-1. Oxid Med Cell Longev. 2016; 2016: 1943918[DOI][PubMed]
  • 34. von Versen-Hoynck F, Brodowski L, Dechend R, Myerski AC, Hubel CA. Vitamin D antagonizes negative effects of preeclampsia on fetal endothelial colony forming cell number and function. PLoS One. 2014; 9(6): 98990[DOI][PubMed]
  • 35. Brodowski L, Burlakov J, Myerski AC, von Kaisenberg CS, Grundmann M, Hubel CA, et al. Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta. PLoS One. 2014; 9(6): 98527[DOI][PubMed]
  • 36. Grundmann M, Haidar M, Placzko S, Niendorf R, Darashchonak N, Hubel CA, et al. Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am J Physiol Cell Physiol. 2012; 303(9): 954-62[DOI][PubMed]
  • 37. Reynolds J, Ray D, Alexander MY, Bruce I. Role of vitamin D in endothelial function and endothelial repair in clinically stable systemic lupus erythematosus. Lancet. 2015; 385 Suppl 1[DOI][PubMed]
  • 38. Saito H, Yamamoto Y, Yamamoto H. Diabetes alters subsets of endothelial progenitor cells that reside in blood, bone marrow, and spleen. Am J Physiol Cell Physiol. 2012; 302(6): 892-901[DOI][PubMed]
  • 39. Patel TP, Rawal K, Bagchi AK, Akolkar G, Bernardes N, Dias Dda S, et al. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev. 2016; 21(1): 11-23[DOI][PubMed]
  • 40. Singh H, Parthasarathy V, Farouk M, Venkatesan V. Progenitor cells may aid successful islet compensation in metabolically healthy obese individuals. Med Hypotheses. 2016; 86: 97-9[DOI][PubMed]
  • 41. Pires A, Martins P, Paiva A, Pereira AM, Marques M, Castela E, et al. Circulating endothelial progenitor cells in obese children and adolescents. J Pediatr (Rio J). 2015; 91(6): 560-6[DOI][PubMed]
  • 42. Kang L, Chen Q, Wang L, Gao L, Meng K, Chen J, et al. Decreased mobilization of endothelial progenitor cells contributes to impaired neovascularization in diabetes. Clin Exp Pharmacol Physiol. 2009; 36(10): 47-56[DOI][PubMed]
  • 43. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005; 111(22): 2981-7[DOI][PubMed]
  • 44. Liao YF, Feng Y, Chen LL, Zeng TS, Yu F, Hu LJ. Coronary heart disease risk equivalence in diabetes and arterial diseases characterized by endothelial function and endothelial progenitor cell. J Diabetes Complications. 2014; 28(2): 214-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader