New Journal Website is available at:

Published by: Kowsar

Pharmacologic Approaches Against Advanced Glycation End Products (AGEs) in Diabetic Cardiovascular Disease

Antonio Nenna 1 , Francesco Nappi 2 , Sanjeet Singh Avtaar Singh 3 , Fraser W. Sutherland 3 , Fabio Di Domenico 4 , Massimo Chello 1 and Cristiano Spadaccio 3 , *
Authors Information
1 Department of Cardiovascular Sciences, Rome University of Campus Bio Medico, Rome, Italy
2 Cardiac Surgery Centre Cardiologique du Nord de Saint-Denis, Paris, France
3 Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Glasgow, UK
4 Department of Biochemical Sciences, La Sapienza University of Rome, Rome, Italy
Article information
  • Research in Cardiovascular Medicine: May 2015, 4 (2); e26949
  • Published Online: May 23, 2015
  • Article Type: Review Article
  • Received: January 13, 2015
  • Revised: February 6, 2015
  • Accepted: February 17, 2015
  • DOI: 10.5812/cardiovascmed.4(2)2015.26949

To Cite: Nenna A, Nappi F, Avtaar Singh S S, Sutherland F W, Di Domenico F, et al. Pharmacologic Approaches Against Advanced Glycation End Products (AGEs) in Diabetic Cardiovascular Disease, Res Cardiovasc Med. 2015 ;4(2):e26949. doi: 10.5812/cardiovascmed.4(2)2015.26949.

Copyright: Copyright © 2015, Research in Cardiovascular Medicine. .
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
  • 1. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res. 2001; 56: 1-21[PubMed]
  • 2. Thornalley PJ. Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci. 2005; 1043: 111-7[DOI][PubMed]
  • 3. Lapolla A, Piarulli F, Sartore G, Ceriello A, Ragazzi E, Reitano R, et al. Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes Care. 2007; 30(3): 670-6[DOI][PubMed]
  • 4. Kilhovd BK, Juutilainen A, Lehto S, Ronnemaa T, Torjesen PA, Hanssen KF, et al. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia. 2007; 50(7): 1409-17[DOI][PubMed]
  • 5. Tanaka K, Nakayama M, Kanno M, Kimura H, Watanabe K, Tani Y, et al. Skin autofluorescence is associated with the progression of chronic kidney disease: a prospective observational study. PLoS One. 2013; 8(12)[DOI][PubMed]
  • 6. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994; 94(1): 110-7[DOI][PubMed]
  • 7. Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DC, et al. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens. 2010; 28(4): 780-8[DOI][PubMed]
  • 8. Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol. 2005; 289(2)-30[DOI][PubMed]
  • 9. Wu L, Juurlink BH. Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension. 2002; 39(3): 809-14[PubMed]
  • 10. Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010; 59(3): 670-8[DOI][PubMed]
  • 11. Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem. 2007; 282(42): 31038-45[DOI][PubMed]
  • 12. Vlassara H, Bucala R. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end product receptors. Diabetes. 1996; 45 Suppl 3-6[PubMed]
  • 13. Yan SF, Ramasamy R, Schmidt AM. The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res. 2010; 106(5): 842-53[DOI][PubMed]
  • 14. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009; 52(11): 2251-63[DOI][PubMed]
  • 15. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999; 84(5): 489-97[PubMed]
  • 16. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005; 83(11): 876-86[DOI][PubMed]
  • 17. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006; 114(6): 597-605[DOI][PubMed]
  • 18. Liang Y-, Chen S-A, Jian J-H. Peroxisome proliferator-activated receptor δ downregulates the expression of the receptor for advanced glycation end products and pro-inflammatory cytokines in the kidney of streptozotocin-induced diabetic mice. Europ J Pharmaceutl Sci. 2011; 43(1): 65-70
  • 19. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes. 2001; 50(12): 2792-808[PubMed]
  • 20. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009; 20(4): 742-52[DOI][PubMed]
  • 21. Shaw SS, Schmidt AM, Banes AK, Wang X, Stern DM, Marrero MB. S100B-RAGE-mediated augmentation of angiotensin II-induced activation of JAK2 in vascular smooth muscle cells is dependent on PLD2. Diabetes. 2003; 52(9): 2381-8[PubMed]
  • 22. Serban AI, Stanca L, Geicu OI, Munteanu MC, Costache M, Dinischiotu A. Extracellular matrix is modulated in advanced glycation end products milieu via a RAGE receptor dependent pathway boosted by transforming growth factor-beta1 RAGE. J Diabetes. 2015; 7(1): 114-24[DOI][PubMed]
  • 23. Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology. 2012; 58(3): 227-37[DOI][PubMed]
  • 24. Greenwald SE. Ageing of the conduit arteries. J Pathol. 2007; 211(2): 157-72[DOI][PubMed]
  • 25. Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ. The role of glycation cross-links in diabetic vascular stiffening. Diabetologia. 1996; 39(8): 946-51[PubMed]
  • 26. Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001; 104(13): 1464-70[PubMed]
  • 27. McNulty M, Mahmud A, Feely J. Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens. 2007; 20(3): 242-7[DOI][PubMed]
  • 28. Schalkwijk CG, Miyata T. Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids. 2012; 42(4): 1193-204[DOI][PubMed]
  • 29. Wang Z, Jiang Y, Liu N, Ren L, Zhu Y, An Y, et al. Advanced glycation end-product Nepsilon-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis. 2012; 221(2): 387-96[DOI][PubMed]
  • 30. Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol. 2011; 46(4): 217-24[DOI][PubMed]
  • 31. Bucala R, Mitchell R, Arnold K, Innerarity T, Vlassara H, Cerami A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem. 1995; 270(18): 10828-32[PubMed]
  • 32. Kanauchi M, Tsujimoto N, Hashimoto T. Advanced glycation end products in nondiabetic patients with coronary artery disease. Diabetes Care. 2001; 24(9): 1620-3[PubMed]
  • 33. Kiuchi K, Nejima J, Takano T, Ohta M, Hashimoto H. Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart. 2001; 85(1): 87-91[PubMed]
  • 34. Schalkwijk CG, Baidoshvili A, Stehouwer CD, van Hinsbergh VW, Niessen HW. Increased accumulation of the glycoxidation product Nepsilon-(carboxymethyl)lysine in hearts of diabetic patients: generation and characterisation of a monoclonal anti-CML antibody. Biochim Biophys Acta. 2004; 1636(2-3): 82-9[PubMed]
  • 35. Sakata N, Meng J, Jimi S, Takebayashi S. Nonenzymatic glycation and extractability of collagen in human atherosclerotic plaques. Atherosclerosis. 1995; 116(1): 63-75[PubMed]
  • 36. Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care. 1999; 22(7): 1186-90[PubMed]
  • 37. Cipollone F, Iezzi A, Fazia M, Zucchelli M, Pini B, Cuccurullo C, et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation. 2003; 108(9): 1070-7[DOI][PubMed]
  • 38. Koyama H, Tanaka S, Monden M, Shoji T, Morioka T, Fukumoto S, et al. Comparison of effects of pioglitazone and glimepiride on plasma soluble RAGE and RAGE expression in peripheral mononuclear cells in type 2 diabetes: randomized controlled trial (PioRAGE). Atherosclerosis. 2014; 234(2): 329-34[DOI][PubMed]
  • 39. Choi EY, Kwon HM, Ahn CW, Lee GT, Joung B, Hong BK, et al. Serum levels of advanced glycation end products are associated with in-stent restenosis in diabetic patients. Yonsei Med J. 2005; 46(1): 78-85[PubMed]
  • 40. Spadaccio C, Patti G, De Marco F, Coccia R, Di Domenico F, Pollari F, et al. Usefulness of preprocedural levels of advanced glycation end products to predict restenosis in patients with controlled diabetes mellitus undergoing drug-eluting stent implantation for stable angina pectoris (from the Prospective ARMYDA-AGEs Study). Am J Cardiol. 2013; 112(1): 21-6[DOI][PubMed]
  • 41. Fukushima Y, Daida H, Morimoto T, Kasai T, Miyauchi K, Yamagishi S, et al. Relationship between advanced glycation end products and plaque progression in patients with acute coronary syndrome: the JAPAN-ACS sub-study. Cardiovasc Diabetol. 2013; 12: 5[DOI][PubMed]
  • 42. Koyama Y, Takeishi Y, Arimoto T, Niizeki T, Shishido T, Takahashi H, et al. High serum level of pentosidine, an advanced glycation end product (AGE), is a risk factor of patients with heart failure. J Card Fail. 2007; 13(3): 199-206[DOI][PubMed]
  • 43. Hartog JW, Voors AA, Schalkwijk CG, Scheijen J, Smilde TD, Damman K, et al. Clinical and prognostic value of advanced glycation end-products in chronic heart failure. Eur Heart J. 2007; 28(23): 2879-85[DOI][PubMed]
  • 44. Wolffenbuttel BH, Giordano D, Founds HW, Bucala R. Long-term assessment of glucose control by haemoglobin-AGE measurement. Lancet. 1996; 347(9000): 513-5[PubMed]
  • 45. Chello M, Spadaccio C, Lusini M, Covino E, Blarzino C, De Marco F, et al. Advanced glycation end products in diabetic patients with optimized glycaemic control and their effects on endothelial reactivity: possible implications in venous graft failure. Diabetes Metab Res Rev. 2009; 25(5): 420-6[DOI][PubMed]
  • 46. Simm A, Wagner J, Gursinsky T, Nass N, Friedrich I, Schinzel R, et al. Advanced glycation endproducts: a biomarker for age as an outcome predictor after cardiac surgery? Exp Gerontol. 2007; 42(7): 668-75[DOI][PubMed]
  • 47. Meerwaldt R, Lutgers HL, Links TP, Graaff R, Baynes JW, Gans RO, et al. Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care. 2007; 30(1): 107-12[DOI][PubMed]
  • 48. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004; 24(1): 32-40[DOI][PubMed]
  • 49. Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials. 1999; 20(5): 493-510[PubMed]
  • 50. Williams ME, Bolton WK, Khalifah RG, Degenhardt TP, Schotzinger RJ, McGill JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol. 2007; 27(6): 605-14[DOI][PubMed]
  • 51. House AA, Eliasziw M, Cattran DC, Churchill DN, Oliver MJ, Fine A, et al. Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial. JAMA. 2010; 303(16): 1603-9[DOI][PubMed]
  • 52. Thornalley PJ, Rabbani N. Therapy: Vitamin B6, B9 and B12 in diabetic nephropathy--beware. Nat Rev Endocrinol. 2010; 6(9): 477-8[DOI][PubMed]
  • 53. Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Gotting C, et al. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care. 2006; 29(9): 2064-71[DOI][PubMed]
  • 54. Rabbani N, Alam SS, Riaz S, Larkin JR, Akhtar MW, Shafi T, et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia. 2009; 52(2): 208-12[DOI][PubMed]
  • 55. Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ, et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010; 33(7): 1598-601[DOI][PubMed]
  • 56. Alkhalaf A, Kleefstra N, Groenier KH, Bilo HJ, Gans RO, Heeringa P, et al. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy. PLoS One. 2012; 7(7)[DOI][PubMed]
  • 57. Fraser DA, Diep LM, Hovden IA, Nilsen KB, Sveen KA, Seljeflot I, et al. The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24-month, double-blind, randomized, placebo-controlled trial. Diabetes Care. 2012; 35(5): 1095-7[DOI][PubMed]
  • 58. Sebekova K, Gazdikova K, Syrova D, Blazicek P, Schinzel R, Heidland A, et al. Effects of ramipril in nondiabetic nephropathy: improved parameters of oxidatives stress and potential modulation of advanced glycation end products. J Hum Hypertens. 2003; 17(4): 265-70[DOI][PubMed]
  • 59. Komiya N, Hirose H, Saisho Y, Saito I, Itoh H. Effects of 12-month valsartan therapy on glycation and oxidative stress markers in type 2 diabetic subjects with hypertension. Int Heart J. 2008; 49(6): 681-9[PubMed]
  • 60. Ono Y, Mizuno K, Takahashi M, Miura Y, Watanabe T. Suppression of advanced glycation and lipoxidation end products by angiotensin II type-1 receptor blocker candesartan in type 2 diabetic patients with essential hypertension. Fukushima J Med Sci. 2013; 59(2): 69-75[PubMed]
  • 61. Saha SA, LaSalle BK, Clifton GD, Short RA, Tuttle KR. Modulation of advanced glycation end products by candesartan in patients with diabetic kidney disease--a dose-response relationship study. Am J Ther. 2010; 17(6): 553-8[DOI][PubMed]
  • 62. Scharnagl H, Stojakovic T, Winkler K, Rosinger S, Marz W, Boehm BO. The HMG-CoA reductase inhibitor cerivastatin lowers advanced glycation end products in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2007; 115(6): 372-5[DOI][PubMed]
  • 63. Cuccurullo C, Iezzi A, Fazia ML, De Cesare D, Di Francesco A, Muraro R, et al. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006; 26(12): 2716-23[DOI][PubMed]
  • 64. Nakamura T, Sato E, Fujiwara N, Kawagoe Y, Takeuchi M, Maeda S, et al. Atorvastatin reduces proteinuria in non-diabetic chronic kidney disease patients partly via lowering serum levels of advanced glycation end products (AGEs). Oxid Med Cell Longev. 2010; 3(5): 304-7[PubMed]
  • 65. Little WC, Zile MR, Kitzman DW, Hundley WG, O'Brien TX, Degroof RC. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail. 2005; 11(3): 191-5[PubMed]
  • 66. Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens. 2007; 25(3): 577-83[DOI][PubMed]
  • 67. Willemsen S, Hartog JW, Hummel YM, Posma JL, van Wijk LM, van Veldhuisen DJ, et al. Effects of alagebrium, an advanced glycation end-product breaker, in patients with chronic heart failure: study design and baseline characteristics of the BENEFICIAL trial. Eur J Heart Fail. 2010; 12(3): 294-300[DOI][PubMed]
  • 68. Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011; 13(8): 899-908[DOI][PubMed]
  • 69. Oudegeest-Sander MH, Olde Rikkert MG, Smits P, Thijssen DH, van Dijk AP, Levine BD, et al. The effect of an advanced glycation end-product crosslink breaker and exercise training on vascular function in older individuals: a randomized factorial design trial. Exp Gerontol. 2013; 48(12): 1509-17[DOI][PubMed]
  • 70. Fujimoto N, Hastings JL, Carrick-Ranson G, Shafer KM, Shibata S, Bhella PS, et al. Cardiovascular effects of 1 year of alagebrium and endurance exercise training in healthy older individuals. Circ Heart Fail. 2013; 6(6): 1155-64[DOI][PubMed]
  • 71. Oz Gul O, Tuncel E, Yilmaz Y, Ulukaya E, Gul CB, Kiyici S, et al. Comparative effects of pioglitazone and rosiglitazone on plasma levels of soluble receptor for advanced glycation end products in type 2 diabetes mellitus patients. Metabolism. 2010; 59(1): 64-9[DOI][PubMed]
  • 72. Gada E, Owens AW, Gore MO, See R, Abdullah SM, Ayers CR, et al. Discordant effects of rosiglitazone on novel inflammatory biomarkers. Am Heart J. 2013; 165(4): 609-14[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader