New Journal Website is available at: http://www.journalonweb.com/rcm

Published by: Kowsar

Enzyme Polymorphism in Warfarin Dose Management After Pediatric Cardiac Surgery

Avisa Tabib 1 , Babak Najibi 2 , * , Mohammad Dalili 2 , Ramin Baghaei 2 and Behzad Poopak 3
Authors Information
1 Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, IR Iran
2 Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, IR Iran
3 Tehran Medical Sciences Branch, Islamic Azad University, Tehran, IR Iran
Article information
  • Research in Cardiovascular Medicine: August 2015, 4 (3); e27963
  • Published Online: August 1, 2015
  • Article Type: Research Article
  • Received: February 14, 2015
  • Revised: March 28, 2015
  • Accepted: April 17, 2015
  • DOI: 10.5812/cardiovascmed.27963v2

To Cite: Tabib A, Najibi B, Dalili M, Baghaei R, Poopak B. et al. Enzyme Polymorphism in Warfarin Dose Management After Pediatric Cardiac Surgery, Res Cardiovasc Med. 2015 ;4(3):e27963. doi: 10.5812/cardiovascmed.27963v2.

Abstract
Copyright: Copyright © 2015, Research in Cardiovascular Medicine. .
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Kearon C, Ginsberg JS, Kovacs MJ, Anderson DR, Wells P, Julian JA, et al. Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. N Engl J Med. 2003; 349(7): 631-9[DOI][PubMed]
  • 2. Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004; 126(3 Suppl): 204S-33S[DOI][PubMed]
  • 3. Wysowski DK, Nourjah P, Swartz L. Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med. 2007; 167(13): 1414-9[DOI][PubMed]
  • 4. Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood. 2012; 119(3): 868-73[DOI][PubMed]
  • 5. Nguyen N, Anley P, Yu MY, Zhang G, Thompson AA, Jennings LJ. Genetic and clinical determinants influencing warfarin dosing in children with heart disease. Pediatr Cardiol. 2013; 34(4): 984-90[DOI][PubMed]
  • 6. Kato Y, Ichida F, Saito K, Watanabe K, Hirono K, Miyawaki T, et al. Effect of the VKORC1 genotype on warfarin dose requirements in Japanese pediatric patients. Drug Metab Pharmacokinet. 2011; 26(3): 295-9[DOI][PubMed]
  • 7. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005; 14(13): 1745-51[DOI][PubMed]
  • 8. Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002; 54(10): 1257-70[PubMed]
  • 9. Voora D, Eby C, Linder MW, Milligan PE, Bukaveckas BL, McLeod HL, et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Haemost. 2005; 93(4): 700-5[DOI][PubMed]
  • 10. Takahashi H, Wilkinson GR, Caraco Y, Muszkat M, Kim RB, Kashima T, et al. Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients. Clin Pharmacol Ther. 2003; 73(3): 253-63[DOI][PubMed]
  • 11. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001; 40(8): 587-603[DOI][PubMed]
  • 12. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics. 2006; 16(2): 101-10[PubMed]
  • 13. Kim HS, Lee SS, Oh M, Jang YJ, Kim EY, Han IY, et al. Effect of CYP2C9 and VKORC1 genotypes on early-phase and steady-state warfarin dosing in Korean patients with mechanical heart valve replacement. Pharmacogenet Genomics. 2009; 19(2): 103-12[DOI][PubMed]
  • 14. Takahashi H, Wilkinson GR, Padrini R, Echizen H. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther. 2004; 75(5): 376-80[DOI][PubMed]
  • 15. Langley MR, Booker JK, Evans JP, McLeod HL, Weck KE. Validation of clinical testing for warfarin sensitivity: comparison of CYP2C9-VKORC1 genotyping assays and warfarin-dosing algorithms. J Mol Diagn. 2009; 11(3): 216-25[DOI][PubMed]
  • 16. Li T, Lange LA, Li X, Susswein L, Bryant B, Malone R, et al. Polymorphisms in the VKORC1 gene are strongly associated with warfarin dosage requirements in patients receiving anticoagulation. J Med Genet. 2006; 43(9): 740-4[DOI][PubMed]
  • 17. Zhao F, Loke C, Rankin SC, Guo JY, Lee HS, Wu TS, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther. 2004; 76(3): 210-9[DOI][PubMed]
  • 18. Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J, Wadelius C, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet. 2007; 121(1): 23-34[DOI][PubMed]
  • 19. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002; 287(13): 1690-8[PubMed]
  • 20. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res. 2007; 5(1): 8-16[DOI][PubMed]
  • 21. Lee SC, Ng SS, Oldenburg J, Chong PY, Rost S, Guo JY, et al. Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther. 2006; 79(3): 197-205[DOI][PubMed]
  • 22. Hillman MA, Wilke RA, Yale SH, Vidaillet HJ, Caldwell MD, Glurich I, et al. A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res. 2005; 3(3): 137-45[PubMed]
  • 23. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005; 352(22): 2285-93[DOI][PubMed]
  • 24. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. 2005; 5(4): 262-70[DOI][PubMed]
  • 25. Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther. 2008; 84(1): 83-9[DOI][PubMed]
  • 26. Veenstra DL, Blough DK, Higashi MK, Farin FM, Srinouanprachan S, Rieder MJ, et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther. 2005; 77(5): 353-64[DOI][PubMed]
  • 27. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005; 106(7): 2329-33[DOI][PubMed]
  • 28. D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005; 105(2): 645-9[DOI][PubMed]
  • 29. Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clinic Proceedings. : 1079-94
  • 30. International Warfarin Pharmacogenetics C, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009; 360(8): 753-64[DOI][PubMed]
  • 31. Elias GP, Antoniali C, Mariano RC. Comparative study of rules employed for calculation of pediatric drug dosage. J Appl Oral Sci. 2005; 13(2): 114-9[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader